
Integration of Databases and World Wide Web
Based on Open-Source Technologies

Dobrica Pavlinušić
University of Zagreb,

Faculty of Organization and Informatics, Varaždin
dpavlin@foi.hr

Alen Lovren � ić, M.S.
University of Zagreb,

Faculty of Organization and Informatics, Varaždin
alovrenc@foi.hr

Abstract: This paper deals with the problem of developing applications which use databases
with World Wide Web front ends, based on open-source technologies. This involves some
limitations and problems that are discussed in more details.

Keywords: open-source, database, World Wide Web, WWW, integration

1. What had to be done?

First, let us examine the goal of this project, which was to build application for article
submission for conference “International Conference on Information and Intelligent Systems”
in Varaždin. We had several requests that had to be taken into account:

- we need repository for submitted articles which can be accessed over Internet and intranet
(because users of this will come from all over the world using Internet and we want to
update database from our local area network)

- database should be assessable from web browser over Internet and desktop database
applications (like Microsoft Access) from intranet for easy updates

- database should provide authors all over the Internet with ability to change data about
theirs articles in database after authorization, and contain all our information needed for
conference

- we had limited budget which prevented us from evaluating commercial solutions

- our project ought to be used for at least five years, so we shouldn’t choose some property
solution which will cease to exist in that time-frame

With all those points in mind, we decided to build application that is based on relational
database with World Wide Web front end based on open-source technologies.

2. What is World Wide Web?

The World Wide Web (known as "WWW', "Web" or "W3") is the universe of network-
accessible information, the embodiment of human knowledge [11].
It is basically composed of two main protocols. One of them is called HyperText Transfer
Protocol (HTTP) and the other is HyperText Markup Language (HTML). HTML is language
that describes appearance of text on screen (which is in fact displayed and positioned on



screen by your web browser) and links or references in form of hypertext. HTTP is protocol
based on TCP/IP, used to transfer HTML pages over network, from HTTP server to client’s
web browser, which is in this architecture client for accessing HTTP server. More information
about HTML and HTTP can be found in [7] and [3].

3. Why should we use relational databases?

The database is a data structure, usually rather big and stored in secondary memory, which is
specialized for easy processing of large amount of different queries, and other operations
among large scale of different data. There are many different database management systems
(DBMS), that are used as interface between database user and computer, so user can look at
his database from logical point of view, without any need to know physical way DBMS use
for data storage. From that point of view DBMS can be seen as back-end CASE tool for static
part of information system.

From early 70’s when F.E. Codd developed it, relational model is the most used model for
database design, so almost all DBMS used today are relational (RDBMS). Advantages that
made figured relational model almost the only one used for database management today are
formal foundations, complete independence of logical and physical level of database, easy
way of connecting database objects at logical level etc.

Relational model is consists of 2 classes of objects – relations, attributes. We can say that the
attribute is atom of relational model.Attributes consist of attribute nameand domain.
Domains are usually standard data types known from procedural programming.

Next step is to define relational scheme.Relational schemeis finite sets of attributes.
Relational scheme a pattern for building relations.

Let us say that (A1,D1), ..., (An,Dn) are attributes that form relational scheme R. Let D1, ... Dn

are domains of that attributes. We define D=D1∪...∪Dn. Then we can definerow or recordas
function t:R→D, with property that t((Ai,Di))∈Di. Intuitively said, records are n-tuples of
values, where ith value is chosen from domain of ith attribute. In cases when attribute domains
are known form semantic context, we usually define attributes only with their names. In that
case we write relation as R(A1,...,An)
Now we can say thatrelation is finite set of records. Relations can be presented as two-
dimensional tables. For example, if we have the relation called BOOK with relational scheme
(NO#, NAME, ISBN), we can represent relation among this scheme as table:

BOOK NO# NAME ISBN
1 Hitchhiker’s Guide to the Galaxy 0345391802
2 The Hobbit 0395282659
3 Do Androids Dream of Electric Sheep? 0345404475

Table 1: relation representation

In this table heading row represents relational scheme, and body rows represent records. In
head of each column is attribute name.
To have access to every record in database, in each relation we highlight one or more
attributes as aprimary key. Attributes in primary key have to be unique for each record in the
relation.
Now we can say thatdatabaseis set of relations.
We build databases as models of real world. But, in reality objects are not independent. There
are connections between them. The database, as the model of real world, has to represent



those connections too. Because of that we introduce a concept of relationships.Relationshipis
a connection between two or more records of relations. It doesn’t mean that there are no
relationships between record of the same relation.
Relationships in relational model are not represented. Relationships are created as they are
used for queries RDBMS receive. Because of that relational model is flexible for very large
scale of different queries that connect more than one relation from database. To achieve
relationships between records, we use a concept offoreign keys. Foreign key is set of
attributes in some relation that is primary key of some other record of some relation in
database. To illustrate that concept, we propose next example:

AUTHOR NO# NAME
1 R.R. Tolkin
2 Douglas Adams
3 Philip K. Dick

AUTHOR-BOOK AUTHOR-NO# BOOK-NO#
1 2
2 1
3 3

Table 2: example of foreign keys

Relations AUTHOR and BOOK are connected via relation AUTHOR-BOOK. Primary key in
relation BOOK is NO#, as well as primary key in relation AUTHOR is NO#. In relation
AUTHOR-BOOK primary key is set {AUTHOR-NO#, BOOK-NO#}. But in the same time
BOOK-NO# is a foreign key that corresponds to attribute NO# in relation BOOK. In the same
manner, AUTHOR-NO# is a foreign key that corresponds to primary key of relation
AUTHOR.
As we can see, this connection between books and their authors is not implemented directly in
the database, but with proper query it can be obtained from data stored in the database.
To resume, relational database is an easy way to create and manage large amount of data in
organized and easy-to-retrieve way.

4. Integration of RDBMS and WWW

Now that we introduced RDBMS and World Wide Web, we should answer to main question:
why should we integrate databases and WWW? There are many different interfaces for
database-human interaction, so why should we use WWW? There are many answers, but lets
just outline few most important ones for us:

- databases are best used for storing all kind of information,

- HTML enables various forms of data representation (which are suitable for displaying
data from relational databases), which is platform and location independent,

- modern trends in database design include client/server architecture that can be
implemented using proposed model quite easily.

If we review those points relating to our initial goals, we can see that they are almost perfect
fit. So, choosing RDBMS and WWW was logical choice.



4.1.Connecting WWW and Databases

There are two ways for connecting World Wide Web and databases. One is to use CGI that
starts external programs (that process is computing intensive) and the other is to use some sort
of extension of HTML language.

HTTP server CGI programCGI

Internet

client
browser

HTML

DBMS

SQL

HTML pages
with CGI calls

CGI
programs

Figure 1: example of CGI-based application

CGI (Common Gateway Interface) is an API that defines how applications “talk to” web
serves (and exchange data with them). HTTP defines way in which web clients send data to
web servers, which in turn, transfers that data to CGI programs which process them. CGI
programs are, in our case, programs that are used to access databases. They can create output,
which is in most cases HTML pages, which are then transferred to client machines using
HTTP protocol by HTTP servers.

HTTP server

Internet

client
browser

HTML

DBMSSQL
HTML

extension
module

HTML with
property tags

for SQL access

Figure 2: example of HTML language extension

The other way to access databases from WWW is to use some kind of HTML language
extension. These extensions define special tags, which are not transferred to client web



browsers, but executed and replaced by the result of that execution (which is in most cases
again HTML code). However, second approach has advantage in easier maintenance (code
and HTML aren’t divided) and speed of execution (as no external programs are forked. All
processing is done inside web server).

4.2.Double client/server architecture

To add to general confusion, client/server architecture in this case is twofold. First, we have
client/server architecture in WWW. In this case, clients are programs (browsers) which
display data received from servers (HTTP servers) in HTML format on user screens. On the
other hand, from database view, clients are CGI scripts which access database directly, but
also JavaScript programs which are run "inside" clients browsers whose main purpose is to
check validity of input data. Server, from database view, is, of course, relational database
management system. Example of such architecture that is used in our project is shown in
Figure 3.

CGI program

Internet

client browser

HTML

RDBMS

SQL

HTTP server

HTML
extension

module
CGI

SQL

SERVER

CLIENT

HTTP

SERVER

CLIENT

RDBMS

java script

Figure 3: example of double client/server architecture

All of components mentioned before (client browser, HTTP server, CGI program and
RDBMS) can be distributed throughout the network to provide load balancing or just to
accommodate flood of requests that is possible.
So, if we look at client/server architecture described above as a distributed system, there is
one more important thing to note: system architecture must also be open. Here are reasons
why: [1]

- benefits of interoperability and portability extend to all components in the architecture,

- the architecture can be specialized or can evolve by changing the implementation of
individual components, and

- the architecture can be extended by introducing new components at a later date.



By choosing HTTP as main transport protocol, HTML as a language for data representation to
user and SQL as a query language for database, we have fulfilled requirement for open
systems. As we will see in chapter 6, that gave us the ability to change tool for displaying of
information in middle of project.

5. Open-source

5.1. Introduction

Open-source is definitely buzzword of today. It is first introduced in Eric Raymond’s article
“The Cathedral and the Bazaar” [3], while making a case for open-source development within
an extended developer community as a way to create better software. This article motivated
Netscape to open-source Netscape Navigator product [4] that became Mozilla.

Open-source software and open-source development projects have existed for many years
under the general term “free software.” The word “free” has traditionally two meanings: as in
free speechand as infree beer. Unfortunately, IT community in general had negative
connotation to everything free (inbeersense, although that was important factor in choosing
open-source for this project). And, they don’t really care for free inspeechsense also.

As contrary to that, Richard Stallman, a most vocal free-software advocate did not argue in
his “GNU Manifesto” [10] that software development should always be an unpaid or
nonprofit activity. Rather he proposed that for-profit business models should treat software as
a professional service rather than as intellectual property.

I will not get into details about distinction between free and open-source (interested readers
are referred to [9]), but I would like to point out that freedom involved with open-source is
often essential to many free-software developers.

Officially, open-source means more than that source code is available. The source must be
available for redistribution without restriction and without charge, and the license must permit
the creation of modifications and derivative works, and must allow those derivatives to be
redistributed under the same terms as the original work. Licenses that conform with the Open
Source Definition include the GNU Public License (GPL), the BSD license used with
Berkeley Unix derivatives, the X Consortium license for the X Window System, and the
Mozilla Public License.
But open-source is more than just a matter of licenses. Some of the most significant advances
in computing, advances that are significantly shaping our economy and our future, are the
product of a little-understood “hacker culture.” It is essential to understand this culture and
how it produces such innovative, high-quality software. What’s more, companies large and
small are struggling to understand how the ethic of free source code distribution affects the
economic models underlying their present businesses. [3]

5.2.Support, reliability and design practice

Open-source has support in form of e-mail or Usenet group. Although there is a 24-hour
support for some of open-source products, that is not always the case. Database selected for
this project, MySQL, has commercial support available.
Reliability is achieved through peer user community that can have a look at source code and
examine it. That usually happens when some user (who, in most cases, is actually a member
of peer community) finds a bug. As the user isn’t limited with restrictive licenses and since
he has source code, he can start fixing bugs right away. There are no long waits for next
release to fix well-known bugs. The same process is used to add new features to product.



Everything with open-source is not roses. As we will find out during our implementation
phase with www-sql, common problem is that open-source product are usually done in hands-
first manner, without good design before implementation [12]. That can lead to tools which
just can’t expand as much as needed.

5.3.Developer conflicts

Krishna Kolluri, Healtheon's VP for applications [12] has interesting thought about this: "The
beauty of open-source is getting so many brilliant minds working on something". However,
open-source developers are busy people working on different projects, so there could be
conflicts. As one interesting post on slashdot.org noticed [14], sometimes developers have
different visions of project. However, since open-source allows fork-off, it is not really the
problem for developers. That leaves users in a difficult position of choosing “one” or “other”
version of same package. Luckily for us, we hadn’t had that problem.
Nevertheless, it is still better to have choice of two different projects that try to achieve same
goal than to have one, which is closed and may not be “the right thing”.

5.4.Advantages and drawbacks of using open-source

Open-source, as stated before, has it's own advantages and drawbacks. However, in this
chapter I will focus only on pros and cons of using open-source products for implementing of
database and World Wide Web integration. We shell try to sum up what had we gained and
lost using open-source technologies, as opposed to some other, commercially available
solutions.
In development stage, we really didn’t have any RAD or CASE tool that we could use. That
was not big problem, as our project is small enough, so we could do it using just pen and
paper (in reality we used Microsoft Access to design database and later exported its structure
via SQL). However, there are no RAD or CASE tools that are open-source. That field is
strictly commercial for now.
The biggest problem we encountered so far is lack of some features in our open-source
database. But, we will say few words about that later.

6. Implementation

6.1.Web server

For our Web server we have chosen Apache Web server [12], which is used by over 50% of
all Web servers on Internet [17]. This choice was logical because of our positive prior
experience with Apache and the fact that it is often cited as one of major open-source projects
available today.

6.2.Database

Our choice of relational database was rather simple one: we had to use one which provided
SQL and was open-source. We didn’t have so much alternatives, so we ended up using
MySQL [16] that is also well supported by our development tools.
The biggest problem with this database is that it supports just subset of SQL92 standard.
However, we where able to write work-around solutions for all problems that could,
otherwise, be solved using some of more advanced features of SQL92.

6.3.Development tools

While initial evaluation of development tools we have considered following alternatives:



(a) Perl with DBI interface for database - this was possible solution but we didn’t want to
maintain separate perl scripts and HTML pages. Also, complexity of code needed to
access database from perl via DBI was too large.

(b) Embedded perl - special version of perl that is based on idea that perl code can be written
inside HTML file solved maintenance problems. However, complexity of DBI was still
here.

(c) Various additional modules for integration of perl, databases and WWW were considered,
but rejected because none of them used SQL language.

(d) www-sql, simple language embedded in HTML based on one additional HTML tag,
<!sql>. Commands inside www-sql tag can do simple nesting, conditional branching and
database access using SQL language.

After doing initial tool evaluation we have selected tool for implementation of our project:
www-sql [5]. During the implementation of our project, we also had to use some other tools
which included perl [18] for some additional CGI scripts and pre-processing and PHP:
Hypertext Preprocessor [19].

A first problem we encountered using www-sql was creating vast amount of HTML forms
needed for input of various data. So we took www-sql source code and added couple of
custom tags to solve this problem. That hands-on approach can be used only on product
which has source code available (which is one of characteristics in open-source), and www-
sql is one of them. Advantage of www-sql was also that it was simple to learn and expand. It
is written in C programming language, so expanding it to our needs was easy.
Patches made against www-sql distribution for our project can be found at
http://www.foi.hr/~dpavlin/projects/www-sql/and used for other projects. GPL license [15] of
www-sql mandates that all patches which are not strictly for internal use must be made
available for download. That is also a momentum of open-source community. Somebody else
can improve our work and give it back to community again.

However, when our project needed to send mail, we turned to perl that is more general-
purpose scripting language. In fist step only sending of mail was implemented using perl CGI
program.

After first part of project was completed, we had to create several screens with just results
from database. In that time, motivated by need for more flexible solution than www-sql, we
started to evaluate PHP that proved to be good solution for almost all our problems. If we
would do this project again, it would be probably completely written in PHP.

Change of development tool didn’t affect our already implemented part, because server
communicates with www-sql pages, perl CGI scripts and PHP pages in same way. So we can
seamlessly integrate those three languages into one compound project.

7. Conclusion

Results of our work can be found athttp://www.foi.hr/iis/. We tried several tools and almost
all of them could do the job. Although we did initial evaluation of more than ten tools, we still
ended up using three of them for this, relatively simple project. However, we don’t see that as
a drawback.

We also encountered some problems that are typical for open-source projects: tools that
doesn’t fit user needs perfectly, but can be easily extended and small problems which would
call to support solve. However, we had to solve them ourselves.

http://www.foi.hr/~dpavlin/projects/www-sql/
http://www.foi.hr/iis/


Altogether, we have created a working project which meets all our goals from beginning of
this article.

8. References:

[1] Gordon Blair, Jean-Bernard Stefani (1998):Open Distributed Processing and
Multimedia, Addison Wesley Longman Ltd, London

[2] Chris Dibona (Editor), et al (1999):Open Sources: Voices from the Open Source
Revolution, O'Reilly, http://www.oreilly.com/catalog/opensources/book/toc.html

[3] J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee (1999):Hypertext
Transfer Protocol -- HTTP/1.1, http://www.w3.org/Protocols/rfc2616/rfc2616.html

[4] Frank Hecker (1998):Setting Up Shop: The Business of Open-Source Software, IEEE
Software, Jan/Feb 1999, p.45-51,http://people.netscape.com/hecker/setting-up-
shop.html

[5] James Henstridge (1998):The WWW-SQL Home Page,
http://www.daa.com.au/~james/www-sql/

[6] Tim O'Reilly (1999):Lessons from Open Source Software development,
Communications of the ACM, April 1999/Vol. 42, No. 4, p.33-37

[7] Dave Raggett, Arnaud Le Hors, Ian Jacobs (1998):HTML 4.0 Specification,
http://www.w3.org/TR/REC-html40/

[8] Eric Raymond (1996):The Cathedral and the Bazaar,
http://www.tuxedo.org/~esr/writings/cathedral-bazaar

[9] Aaron M. Renn (1998):"Free", "Open Source", and Philosophies of Software
Ownership, http://www.urbanophile.com/arenn/hacking/fsvos.html

[10] Richard Stallman (1985):The GNU Manifesto, http://www.gnu.org/gnu/manifesto.html
[11] W3C (1997),About The World Wide Web, http://www.w3.org/WWW/
[12] Greg Wilson (1999):Is the open-source community setting a bad example?, IEEE

Software, Jan/Feb 1999, p.23-25
[13] …(1999)Apache Server Project, http://www.apache.org/httpd.html
[14] …(1999)Conflicting Open Source Developers,

http://slashdot.org/article.pl?sid=99/07/12/1639202&mode=nested
[15] …(1991)GNU General Public License, http://www.gnu.org/copyleft/gpl.html
[16] …(1999)MySQL home page, http://www.mysql.com/
[17] …(1999)The Netcraft Web Server Survey, http://www.netcraft.com/survey/
[18] …(1999)Perl Mongers home page, http://www.perl.org/
[19] …(1999)PHP: Hypertext Preprocessor home page, http://www.php.net/

http://www.oreilly.com/catalog/opensources/book/toc.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://people.netscape.com/hecker/setting-up-shop.html
http://www.daa.com.au/~james/www-sql/
http://www.w3.org/TR/REC-html40/
http://www.tuxedo.org/~esr/writings/cathedral-bazaar
http://www.urbanophile.com/arenn/hacking/fsvos.html
http://www.gnu.org/gnu/manifesto.html
http://www.w3.org/WWW/
http://www.apache.org/httpd.html
http://slashdot.org/article.pl?sid=99/07/12/1639202&mode=nested
http://www.gnu.org/copyleft/gpl.html
http://www.mysql.com/
http://www.netcraft.com/survey/
http://www.perl.org/
http://www.php.net/

	What had to be done?
	What is World Wide Web?
	Why should we use relational databases?
	Integration of RDBMS and WWW
	Connecting WWW and Databases
	Double client/server architecture

	Open-source
	Introduction
	Support, reliability and design practice
	Developer conflicts
	Advantages and drawbacks of using open-source

	Implementation
	Web server
	Database
	Development tools

	Conclusion
	References:

