
Web scale monitoring
using gearman, redis, mojolicious, Angular.
js, gnuplot and PostgreSQL as NoSQL store

Dobrica Pavlinušić
http://blog.rot13.org
DORS/CLUC 2012

http://blog.rot13.org/

Goals

● define problem in terms of scaling
○ Gearman as distributed fork

● don't lock yourself into technological choice
○ relational data database, so what?

● don't mungle and rename data
○ preserve naming through whole stack

● test driven development
○ small iterations, easy deployment

● is your cache really useful?
○ can you make web interface out of it?

● why are web interfaces hard?
○ Angular.js comes to rescue!

Project specification

● Existing perl scripts parse telnet output
○ end-users (CPE)
○ equipment in-between (MSAN, DSLAM)

● Create monitoring system!
● Users data split between LDAP and CRM
● Horizontal scalability (on single box!)

○ number of users grow
● Store data in relational database for

reporting
○ All collected data is interesting

● Web interface to inspect data
○ prototype http://youtu.be/Cp31xUdyZBQ

http://youtu.be/Cp31xUdyZBQ

Proposed architecture

● Gearman as queue server
○ workers collect, process and store data
○ Gearman::Driver fork workers on-demand

● PostgreSQL with hstore
○ don't mungle data - not normalized
○ use views for reporting
○ table inheritance for easy expiry of data

● Redis rich structures for data caching
○ provide "warm" data for Web interface

● Web: mojolicious, Angular.js, gnuplot
○ gearman calls and SQL queries to JSONP

CPE
*40

~5300

Gearm
an

DSLAM
34*1-5
~2300

MSAN
40*1-5
~1100

PostgreSQL

Redis

Web UI

cron

poll
*1

store

XML/R
PC CRM

LDAP LDAP

15 min pull interval
dual-core, 4Gb RAM
130-300 processes

More information

http://gearman.org/

http://redis.io/

http://www.postgresql.org/

http://mojolicio.us/

http://angularjs.org/

http://gearman.org/
http://redis.io/
http://www.postgresql.org/
http://mojolicio.us/
http://angularjs.org/

Queue

● distributed (across cores) on-demand fork
● German::Driver manages workers

○ min, max process limits
○ copy-on-write fork
○ three master processes (services, MSAN, DSLAM)
○ modify process name for status info (ps ax)

● german workers
○ pollers generate timestamp for data (inserts are

queued!)
○ one per work (CPE pollers)
○ persistent workers (TCP connection to

MSAN/DSLAM is re-used for all work)

Cache with structures

● store
○ all data from gearman calls (which are slow)
○ statistics from poll workers

● expire data after poll interval
○ fresh data for web interface

● name your keys in sane way!
○ CPE.*, ZTEMSAN.*, ZTEDSLAM.* (poll stats)
○ CRM.login, LDAP.login
○ table.dslam.login (last row inserted)
○ columns.dslam (existence, needed for Web)

hstore

● store key-value pairs (single-level) in single
column

● additional columns to support indexes
○ GiST and GIN indexes on hstore are not enough

● table inheritance
○ partitioning of tables by date
○ DELETE and VACUUM can take a long time
○ set sql_inheritance = false

● using PostgreSQL 8.4 (nothing new!)
● PostgreSQL 9.2 will have JSON type

support and v8!

Web interface

● mojolicious
○ web server and JSON provider
○ MojoX::Gearman

● gnuplot graphs from huge amount of data
○ JavaScript doesn't cut it!
○ get textual data from gearman
○ generate graphs on-the-fly

● Angular.js as nice way to generate HTML
from JSON $resources

https://github.com/dpavlin/MojoX-Gearman

